47 research outputs found

    Review of energy system flexibility measures to enable high levels of variable renewable electricity

    Get PDF
    The paper reviews different approaches, technologies, and strategies to manage large-scale schemes of variable renewable electricity such as solar and wind power. We consider both supply and demand side measures. In addition to presenting energy system flexibility measures, their importance to renewable electricity is discussed. The flexibility measures available range from traditional ones such as grid extension or pumped hydro storage to more advanced strategies such as demand side management and demand side linked approaches, e.g. the use of electric vehicles for storing excess electricity, but also providing grid support services. Advanced batteries may offer new solutions in the future, though the high costs associated with batteries may restrict their use to smaller scale applications. Different “P2Y”-type of strategies, where P stands for surplus renewable power and Y for the energy form or energy service to which this excess in converted to, e.g. thermal energy, hydrogen, gas or mobility are receiving much attention as potential flexibility solutions, making use of the energy system as a whole. To “functionalize” or to assess the value of the various energy system flexibility measures, these need often be put into an electricity/energy market or utility service context. Summarizing, the outlook for managing large amounts of RE power in terms of options available seems to be promising.Peer reviewe

    Direct Ink Writing of Biocompatible Nanocellulose and Chitosan Hydrogels for Implant Mesh Matrices

    Get PDF
    Direct ink writing via single or multihead extrusion is used to synthesize layer-by-layer (LbL) meshes comprising renewable polysaccharides. The best mechanical performance (683 ± 63 MPa modulus and 2.5 ± 0.4 MPa tensile strength) is observed for 3D printed structures with full infill density, given the role of electrostatic complexation between the oppositely charged components (chitosan and cellulose nanofibrils). The LbL structures develop an unexpectedly high wet stability that undergoes gradual weight loss at neutral and slightly acidic pH. The excellent biocompatibility and noncytotoxicity toward human monocyte/macrophages and controllable shrinkage upon solvent exchange make the cellular meshes appropriate for use as biomedical implants.Peer reviewe

    Viljasadon korjuu ja varastointi

    Get PDF
    ei saatavill

    Sampling effort and information quality provided by rare and common species in estimating assemblage structure

    Get PDF
    Reliable biological assessments are essential to answer ecological and management questions but require well-designed studies and representative sample sizes. However, large sampling effort is rarely possible, because it demands large financial resources and time, restricting the number of sites sampled, the duration of the study and the sampling effort at each site. In this context, we need methods and protocols allowing cost-effective surveys that would, consequently, increase the knowledge about how biodiversity is distributed in space and time. Here, we assessed the minimal sampling effort required to correctly estimate the assemblage structure of stream insects sampled in near-pristine boreal and subtropical regions. We used five methods grouped into two different approaches. The first approach consisted of the removal of individuals 1) randomly or 2) based on a count threshold. The second approach consisted of simplification in terms of 1) sequential removal from rare to common species; 2) sequential removal from common to rare species; and 3) random species removal. The reliability of the methods was assessed using Procrustes analysis, which indicated the correlation between a reduced matrix (after removal of individuals or species) and the complete matrix. In many cases, we found a strong relationship between ordination patterns derived from presence/absence data (the extreme count threshold of a single individual) and those patterns derived from abundance data. Also, major multivariate patterns derived from the complete data matrices were retained even after the random removal of more than half of the individuals. Procrustes correlation was generally high ( > 0.8), even with the removal of 50% of the species. Removal of common species produced lower correlation than removal of rare species, indicating higher importance of the former to estimate resemblance between assemblages. Thus, we conclude that sampling designs can be optimized by reducing the sampling effort at a site. We recommend that such efforts saved should be redirected to increase the number of sites studied and the duration of the studies, which is essential to encompass larger spatial, temporal and environmental extents, and increase our knowledge of biodiversity.peerReviewe

    Beta diversity of stream insects differs between boreal and subtropical regions, but land use does not generally cause biotic homogenization

    Get PDF
    Previous studies have found mixed results regarding the relationship between beta diversity and latitude. In addition, by influencing local environmental heterogeneity, land use may modify spatial taxonomic and functional variability among communities causing biotic differentiation or homogenization. We tested 1) whether taxonomic and functional beta diversities among streams within watersheds differ between subtropical and boreal regions and 2) whether land use is related to taxonomic and functional beta diversities in both regions. We sampled aquatic insects in 100 subtropical (Brazil) and 100 boreal (Finland) streams across a wide gradient of land use, including agriculture and exotic planted, secondary, and native forests. We calculated beta diversity at the watershed scale (among 5 streams in each watershed). We found higher taxonomic beta diversity among subtropical than among boreal streams, whereas functional beta diversity was similar between the 2 regions. Total land use was positively correlated with taxonomic and functional beta diversity among subtropical streams, while local environmental heterogeneity was positively correlated with beta diversity among boreal streams. We suggest that different types and intensities of land use may increase among-stream heterogeneity, promoting distinct insect assemblage compositions among streams. Our findings also suggest that beta diversity patterns and their underlying determinants are highly context dependent.Peer reviewe

    Subtropical streams harbour higher genus richness and lower abundance of insects compared to boreal streams, but scale matters

    Get PDF
    Aim: Biological diversity typically varies between climatically different regions, and regions closer to the equator often support higher numbers of taxa than those closer to the poles. However, these trends have been assessed for a few organism groups, and the existing studies have rarely been based on extensive identical surveys in different climatic regions. Location: We conducted standardized surveys of wadeable streams in a boreal (western Finland) and a subtropical (south-eastern Brazil) region, sampling insects identically from 100 streams in each region and measuring the same environmental variables in both regions. Taxon: Aquatic insects. Methods: Comparisons were made at the scales of local stream sites, drainage basins and entire regions. We standardized the spatial extent of the study areas by resampling regional richness based on subsets of sites with similar extents. We examined differences in genus richness and assemblage abundance patterns between the regions using graphical and statistical modelling approaches. Results: We found that while genus accumulation and rank-abundance curves were relatively similar at the regional scale between Finland and Brazil, regional genus richness was higher in the latter but regional abundance much higher in the former region. These regional patterns for richness and abundance were reproduced by basin and local genus richness that were higher in Brazil than in Finland, and assemblage abundance that was much higher in Finland than in Brazil. The magnitude of the difference in genus richness between Brazil and Finland tended to increase from local through basin to regional scales. Main conclusions: Our findings suggest that factors related to evolutionary diversification might explain differences in genus richness between these two climatically different regions, whereas higher nutrient concentrations of stream waters might explain the higher abundance of insects in Finland than in Brazil.Peer reviewe

    Monimuotoisuudelle arvokkaiden metsäympäristöjen tunnistaminen : METSO-ohjelman luonnontieteelliset valintaperusteet 2016–2025

    Get PDF
    Etelä-Suomen metsien monimuotoisuuden toimintaohjelman (METSO) tavoitteena on osaltaan pysäyttää metsäisten luontotyyppien ja metsälajien taantuminen ja vakiinnuttaa luonnon monimuotoisuuden suotuisa kehitys vuoteen 2025 mennessä. Vuonna 2008 käynnistynyt METSO-ohjelma perustuu vapaaehtoisuuteen ja siitä on tullut hyvin suosittu metsänomistajien keskuudessa. METSO-ohjelman avulla pyritään sovittamaan yhteen metsien talouskäyttö ja suojelu. Ympäristöministeriö ja Maa- ja metsätalousministeriö toteuttavat ohjelmaa yhteistyössä. METSO-ohjelman luonnontieteelliset valintaperusteet 2016-2025 valmisteltiin asiantuntijaryhmässä vuonna 2015. Valintaperusteissa esitellään ne monimuotoisuudelle arvokkaat metsäympäristöt, joita METSO-ohjelmalla pyritään turvaamaan. Valintaperusteet ovat apuväline ohjelmaan sopivien kohteiden löytämiseksi eivätkä ne sido metsänomistajaa tai viranomaista kohteen suojeluun. Valintaperusteet koostuvat yleisistä valintaperusteistä ja elinympäristökohtaisista perusteista. Mukana on kymmenen monimuotoisuuden kannalta keskeistä elinympäristöä, joille on laadittu laatuluokitus. Elinympäristöjen rinnalla kohteiden valinnassa voidaan ottaa huomioon uhanalaisten lajien esiintymiä, sijainniltaan sopivia metsätuhokohteita, kulttuuri- ja maisema-arvoja sekä virkistys- ja monikäyttömahdollisuuksia. Etenkin suojeltujen alueiden lähituntumassa voidaan METSO ohjelmaan valita luonnonhoitoa tarvitsevia kohteita

    Does catchment geodiversity foster stream biodiversity?

    Get PDF
    Context One approach to maintain the resilience of biotic communities is to protect the variability of abiotic characteristics of Earth's surface, i.e. geodiversity. In terrestrial environments, the relationship between geodiversity and biodiversity is well recognized. In streams, the abiotic properties of upstream catchments influence stream communities, but the relationships between catchment geodiversity and aquatic biodiversity have not been previously tested. Objectives The aim was to compare the effects of local environmental and catchment variables on stream biodiversity. We specifically explored the usefulness of catchment geodiversity in explaining the species richness on stream macroinvertebrate, diatom and bacterial communities. Methods We used 3 geodiversity variables, 2 land use variables and 4 local habitat variables to examine species richness variation across 88 stream sites in western Finland. We used boosted regression trees to explore the effects of geodiversity and other variables on biodiversity. Results We detected a clear effect of catchment geodiversity on species richness, although the traditional local habitat and land use variables were the strongest predictors. Especially soil-type richness appeared as an important factor for species richness. While variables related to stream size were the most important for macroinvertebrate richness and partly for bacterial richness, the importance of water chemistry and land use for diatom richness was notable. Conclusions In addition to traditional environmental variables, geodiversity may affect species richness variation in streams, for example through changes in water chemistry. Geodiversity information could be used as a proxy for predicting stream species richness and offers a supplementary tool for conservation efforts.peerReviewe

    Controlled Monofunctionalization of Molecular Spherical Nucleic Acids on a Buckminster Fullerene Core

    Get PDF
    An azide-functionalized 12-armed Buckminster fullerene has been monosubstituted in organic media with a substoichiometric amount of cyclooctyne-modified oligonucleo-tides. Exposing the intermediate products then to the same reaction (i. e., strain-promoted alkyne-azide cycloaddition, SPAAC) with an excess of slightly different oligonucleotide constituents in an aqueous medium yields molecularly defined monofunctionalized spherical nucleic acids (SNAs). This procedure offers a controlled synthesis scheme in which one oligonucleotide arm can be functionalized with labels or other conjugate groups (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, DOTA, and Alexa-488 demonstrated), whereas the rest of the 11 arms can be left unmodified or modified by other conjugate groups in order to decorate the SNAs' outer sphere. Extra attention has been paid to the homogeneity and authenticity of the C60-azide scaffold used for the assembly of full-armed SNAs
    corecore